Chebyshev transform

This demonstrates the Chebyshev transform and inverse transform, explaining precisely the normalization and points

using FastTransforms
n = 20
20

First kind points $\to$ first kind polynomials

p_1 = chebyshevpoints(Float64, n, Val(1))
f = exp.(p_1)
f̌ = chebyshevtransform(f, Val(1))
f̃ = x -> [cos(k*acos(x)) for k=0:n-1]' * f̌
f̃(0.1) ≈ exp(0.1)
true

First kind polynomials $\to$ first kind points

ichebyshevtransform(f̌, Val(1)) ≈ exp.(p_1)
true

Second kind points $\to$ first kind polynomials

p_2 = chebyshevpoints(Float64, n, Val(2))
f = exp.(p_2)
f̌ = chebyshevtransform(f, Val(2))
f̃ = x -> [cos(k*acos(x)) for k=0:n-1]' * f̌
f̃(0.1) ≈ exp(0.1)
true

First kind polynomials $\to$ second kind points

ichebyshevtransform(f̌, Val(2)) ≈ exp.(p_2)
true

First kind points $\to$ second kind polynomials

p_1 = chebyshevpoints(Float64, n, Val(1))
f = exp.(p_1)
f̌ = chebyshevutransform(f, Val(1))
f̃ = x -> [sin((k+1)*acos(x))/sin(acos(x)) for k=0:n-1]' * f̌
f̃(0.1) ≈ exp(0.1)
true

Second kind polynomials $\to$ first kind points

ichebyshevutransform(f̌, Val(1)) ≈ exp.(p_1)
true

Second kind points $\to$ second kind polynomials

p_2 = chebyshevpoints(Float64, n, Val(2))[2:n-1]
f = exp.(p_2)
f̌ = chebyshevutransform(f, Val(2))
f̃ = x -> [sin((k+1)*acos(x))/sin(acos(x)) for k=0:n-3]' * f̌
f̃(0.1) ≈ exp(0.1)
true

Second kind polynomials $\to$ second kind points

ichebyshevutransform(f̌, Val(2)) ≈ exp.(p_2)
true

This page was generated using Literate.jl.