Nonlocal diffusion on $\mathbb{S}^2$
This example calculates the spectrum of the nonlocal diffusion operator:
defined in Eq. (2) of
R. M. Slevinsky, H. Montanelli, and Q. Du, A spectral method for nonlocal diffusion operators on the sphere, J. Comp. Phys., 372:893–911, 2018.
In the above, $0<\delta<2$, $-1<\alpha<1$, and the kernel:
where $\chi_I(\cdot)$ is the indicator function on the set $I$.
This nonlocal operator is diagonalized by spherical harmonics:
and its eigenfunctions are given by the generalized Funk–Hecke formula:
In the paper, the authors use Clenshaw–Curtis quadrature and asymptotic evaluation of Legendre polynomials to achieve $\mathcal{O}(n^2\log n)$ complexity for the evaluation of the first $n$ eigenvalues. With a change of basis, this complexity can be reduced to $\mathcal{O}(n\log n)$.
First, we represent:
Then, we represent $P_j^{(1,0)}(t)$ with Jacobi polynomials $P_i^{(\alpha,0)}(t)$ and we integrate using DLMF 18.9.16:
The code below implements this algorithm, making use of the Jacobi–Jacobi transform plan_jac2jac
. For numerical stability, the conversion from Jacobi polynomials $P_j^{(1,0)}(t)$ to $P_i^{(\alpha,0)}(t)$ is divided into conversion from $P_j^{(1,0)}(t)$ to $P_k^{(0,0)}(t)$, before conversion from $P_k^{(0,0)}(t)$ to $P_i^{(\alpha,0)}(t)$.
using FastTransforms, LinearAlgebra
function oprec!(n::Integer, v::AbstractVector, alpha::Real, delta2::Real)
if n > 0
v[1] = 1
end
if n > 1
v[2] = (4*alpha+8-(alpha+4)*delta2)/4
end
for i = 1:n-2
v[i+2] = (((2*i+alpha+2)*(2*i+alpha+4)+alpha*(alpha+2))/(2*(i+1)*(2*i+alpha+2))*(2*i+alpha+3)/(i+alpha+3) - delta2/4*(2*i+alpha+3)/(i+1)*(2*i+alpha+4)/(i+alpha+3))*v[i+1] - (i+alpha+1)/(i+alpha+3)*(2*i+alpha+4)/(2*i+alpha+2)*v[i]
end
return v
end
function evaluate_lambda(n::Integer, alpha::T, delta::T) where T
delta2 = delta*delta
scl = (1+alpha)*(2-delta2/2)
lambda = Vector{T}(undef, n)
if n > 0
lambda[1] = 0
end
if n > 1
lambda[2] = -2
end
oprec!(n-2, view(lambda, 3:n), alpha, delta2)
for i = 2:n-1
lambda[i+1] *= -scl/(i-1)
end
p = plan_jac2jac(T, n-1, zero(T), zero(T), alpha, zero(T))
lmul!(p', view(lambda, 2:n))
for i = 2:n-1
lambda[i+1] = ((2i-1)*lambda[i+1] + (i-1)*lambda[i])/i
end
for i = 2:n-1
lambda[i+1] += lambda[i]
end
return lambda
end
evaluate_lambda (generic function with 1 method)
The spectrum in Float64
:
lambda = evaluate_lambda(10, -0.5, 1.0)
10-element Vector{Float64}:
0.0
-2.0
-5.5
-9.75
-14.09375
-18.203125
-22.08984375
-25.935546875
-29.8870849609375
-33.95416259765625
The spectrum in BigFloat
:
lambdabf = evaluate_lambda(10, parse(BigFloat, "-0.5"), parse(BigFloat, "1.0"))
10-element Vector{BigFloat}:
0.0
-2.0
-5.5
-9.75
-14.09375
-18.203125
-22.08984375
-25.935546875
-29.8870849609375
-33.95416259765625
The $\infty$-norm relative error:
norm(lambda-lambdabf, Inf)/norm(lambda, Inf)
0.0
This page was generated using Literate.jl.